Evolutionary Approaches for the Extraction of Classification Rules

Author:

Benkhider Sadjia1,Baba-Ali Ahmed Riadh2,Drias Habiba1

Affiliation:

1. Laboratory of Research on Artificial Intelligence, University of Sciences and Technology Algiers, Algiers, Algeria

2. Laboratory LRPE, University of Sciences and Technology Algiers, Algiers, Algeria

Abstract

This paper provides evolutionary approaches in order to extract comprehensible and accurate classification rules. Indeed to construct a model of classification tone must extract not only accurate rules but comprehensible also, to help the human interpretation of the model and the decision make process. In this paper the authors describe a purely genetic approach, then a tabu search approach and finaly a memetic algorithm to extract classification rules. The memetic approach is a hybridization of a genetic algorithm (GA) and a local search based on a tabu search algorithm. Knowing that the amount of treated data is always huge in data mining applications, the authors propose to decrease the running time of the GA using a parallel scheme. In the authors' scheme the concept of generation has been removed and replaced by the cycle one and each individual owns a lifespan represented by a number of cycles affected to it randomly at its birth and at the end of which it disappears from the population. Consequently, only certain individuals of the population are evaluated within each iteration of the algorithm and not all our heterogeneous population. This causes the substantial reduction of the total running time of the algorithm since the evaluations of all individuals of each generation necessitates more than 80% of the total running time of a classical GA. This approach has been developed with the goal to present a new and efficient parallel scheme of the classical GA with better performances in terms of running time.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3