Leafcutter Ant Colony Optimization Algorithm for Feature Subset Selection on Classifying Digital Mammograms

Author:

Mohideen Abubacker Kaja1,Thangavel Kuttiannan2

Affiliation:

1. Department of Applied Mathematics and Computational Sciences, PSG College of Technology, Coimbatore, Tamil Nadu, India

2. Department of Computer Science, Periyar University, Salem, Tamil Nadu, India

Abstract

Ant Colony Optimization (ACO) has been applied in wide range of applications. In ACO, for every iteration the entire problem space is considered for the solution construction using the probability of the pheromone deposits. After convergence, the global solution is made with the path which has highest pheromone deposit. In this paper, a novel solution construction technique has been proposed to reduce the time complexity and to improve the performance of the ACO. The idea is derived from the behavior of a special ant species called ‘Leafcutter Ants', they spend much of their time for cutting leaves to make fertilizer to gardens in which they grow the fungi that they eat. This behavior is incorporated with the general ACO algorithm to propose a novel feature selection method called ‘Leafcutter Ant Colony Optimization' (LACO) algorithm. The LACO has been applied to select the relevant features for digital mammograms and their corresponding classification performance is studied and compared.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Reference61 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3