Affiliation:
1. Kwame Nkrumah University of Science and Technology, Ghana
2. University of Ghana, Ghana
Abstract
This work presents an ensemble method which combines both the strengths and weakness of particle swarm optimization (PSO) with genetic algorithm (GA) operators like crossover and mutation to solve the vehicle routing problem. Given that particle swarm optimization and genetic algorithm are both population-based heuristic search evolutionary methods as used in many fields, the standard particle swarm optimization stagnates particles more quickly and converges prematurely to suboptimal solutions which are not guaranteed to be local optimum. Although both PSO and GA are approximation methods to an optimization problem, these algorithms have their limitations and benefits. In this study, modifications are made to the original algorithmic structure of PSO by updating it with some selected GA operators to implement a hybrid algorithm. A computational comparison and analysis of the results from the non-hybrid algorithm and the proposed hybrid algorithm on a MATLAB simulation environment tool show that the hybrid algorithm performs quite well as opposed to using only GA or PSO.
Subject
Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献