A Novel Dynamic Hybridization Method for Best Feature Selection
Author:
Dif Nassima1ORCID,
Elberrichi Zakaria1ORCID
Affiliation:
1. EEDIS Laboratory, Djillali Liabes University, Algeria
Abstract
Hybrid metaheuristics has received a lot of attention lately to solve combinatorial optimization problems. The purpose of hybridization is to create a cooperation between metaheuristics for better solutions. Most proposed works were interested in static hybridization. The objective of this work is to propose a novel dynamic hybridization method (GPBD) that generates the most suitable sequential hybridization between GA, PSO, BAT, and DE metaheuristics, according to each problem. The authors choose to test this approach for solving the best feature selection problem in a wrapper tactic, performed on face image recognition datasets, with the k-nearest neighbor (KNN) learning algorithm. The comparative study of the metaheuristics and their hybridization GPBD shows that the proposed approach achieved the best results. It was definitely competitive with other filter approaches proposed in the literature. It achieved a perfect accuracy score of 100% for Orl10P, Pix10P, and PIE10P datasets.
Subject
Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献