Affiliation:
1. GeCoDe Laboratory, Department of Computer Science, Tahar Moulay University of Saïda, Algeria
Abstract
This article is a comparative study between two bio-inspired approach based on the swarm intelligence for automatic text summaries: Social Spiders and Social Bees. The authors use two techniques of extraction, one after the other: scoring of phrases, and similarity that aims to eliminate redundant phrases without losing the theme of the text. While the optimization use the bio-inspired approach to performs the results of the previous step. Its objective function of the optimization is to maximize the sum of similarity between phrases of the candidate summary in order to keep the theme of the text, minimize the sum of scores in order to increase the summarization rate; this optimization also will give a candidate's summary where the order of the phrases changes compared to the original text. The third and final step concerned in choosing a best summary from all candidates summaries generated by optimization layer, the authors opted for the technique of voting with a simple majority.
Subject
Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献