Affiliation:
1. Chitkara University, Baddi, India
2. Jaypee University of Infromation Technoogy, India
Abstract
Clustering is an unsupervised machine learning technique that optimally organizes the data objects in a group of clusters. In present work, a meta-heuristic algorithm based on cat intelligence is adopted for optimizing clustering problems. Further, to make the cat swarm algorithm (CSO) more robust for partitional clustering, some modifications are incorporated in it. These modifications include an improved solution search equation for balancing global and local searches, accelerated velocity equation for addressing diversity, especially in tracing mode. Furthermore, a neighborhood-based search strategy is introduced to handle the local optima and premature convergence problems. The performance of enhanced cat swarm optimization (ECSO) algorithm is tested on eight real-life datasets and compared with the well-known clustering algorithms. The simulation results confirm that the proposed algorithm attains the optimal results than other clustering algorithms.
Subject
Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献