Affiliation:
1. School of Renewable Energy, North China Electric University, Beijing, China
Abstract
Traveling salesman problem (TSP) is a classic combinatorial optimization problem. The time complexity of the exact algorithms is generally an exponential function of the scale of TSP. This work gives an approximate algorithm with a four-vertex-three-line inequality for the triangle TSP. The time complexity is O(n2) and it can generate an approximation less than 2 times of the optimal solution. The paper designs a simple algorithm with the inequality. The algorithm is compared with the double-nearest neighbor algorithm. The experimental results illustrate the algorithm find the better approximations than the double-nearest neighbor algorithm for most TSP instances.
Subject
Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献