Affiliation:
1. Department of Electrical Engineering, National Institute of Technology Silchar, Silchar, India
Abstract
Multilevel thresholding is a popular image segmentation technique. However, computational complexity of multilevel thresholding increases very rapidly with increasing number of thresholds. Metaheuristic algorithms are applied to reduce computational complexity of multilevel thresholding. A new method of multilevel thresholding based on Moth-Flame Optimization (MFO) algorithm is proposed in this paper. The goodness of the thresholds is evaluated using Kapur's entropy or Otsu's between class variance function. The proposed method is tested on a set of benchmark test images and the performance is compared with PSO (Particle Swarm Optimization) and BFO (Bacterial Foraging Optimization) based methods. The results are analyzed objectively using the fitness function and the Peak Signal to Noise Ratio (PSNR) values. It is found that MFO based multilevel thresholding method performs better than the PSO and BFO based methods.
Subject
Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献