Affiliation:
1. University of Jeddah, Jeddah, Saudi Arabia; University of Ontario Institute of Technology Oshawa, Canada
Abstract
Metaheuristics have been very successful to solve NP-hard optimization problems. However, some problems such as big optimization problems are too expensive to be solved using classical computing. Naturally, the increasing availability of high performance computing (HPC) is an appropriate alternative to solve such complex problems. In addition, the use of HPC can lead to more accurate metaheuristics if their internal mechanisms are enhanced. Particle swarm optimization (PSO) is one of the most know metaheuristics and yet does not have many parallel versions of PSO which take advantage of HPC via algorithmic modifications. Therefore, in this article, the authors propose a cooperative asynchronous parallel PSO algorithm (CAPPSO) with a new velocity calculation that utilizes a cooperative model of sub-swarms. The asynchronous communication among the sub-swarms makes CAPPSO faster than a parallel and more accurate than the master-slave PSO (MS-PSO) when the tested big problems.
Subject
Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献