Empirical Evaluation of Hill Climbing Algorithm

Author:

Khari Manju1,Kumar Prabhat2

Affiliation:

1. Department of Computer Science and Engineering, Guru Gobind Singh Indraprastha University, Delhi, India

2. Department of Computer Science and Engineering, National Institute of Technology Patna, Patna, India

Abstract

The software is growing in size and complexity every day due to which strong need is felt by the research community to search for the techniques which can optimize test cases effectively. The current study is inspired by the collective behavior of finding paths from the colony of food and uses different versions of Hill Climbing Algorithm (HCA) such as Stochastic, and Steepest Ascent HCA for the purpose of finding a good optimal solution. The performance of the proposed algorithm is verified on the basis of three parameters comprising of optimized test cases, time is taken during the optimization process, and the percentage of optimization achieved. The results suggest that proposed Stochastic HCA is significantly average percentage better than Steepest Ascent HCA in reducing the number of test cases in order to accomplish the optimization target.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep neural annealing model for the semantic representation of documents;Engineering Applications of Artificial Intelligence;2020-11

2. Local Search Strategy Embedded ABC and Its Application in Cost Optimization Model of Project Time Schedule;International Journal of Applied Metaheuristic Computing;2019-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3