AntMeshNet

Author:

Sharma Sharad1,Kumar Shakti2,Singh Brahmjit1

Affiliation:

1. Department of Electronics & Communications Engineering, National Institute of Technology, Kurukshetra, Haryana, India

2. Computational Intelligence (CI) Lab, IST Klawad, Yamunanagar, Haryana, India

Abstract

Wireless Mesh Networks (WMNs) are emerging as evolutionary self organizing networks to provide connectivity to end users. Efficient Routing in WMNs is a highly challenging problem due to existence of stochastically changing network environments. Routing strategies must be dynamically adaptive and evolve in a decentralized, self organizing and fault tolerant way to meet the needs of this changing environment inherent in WMNs. Conventional routing paradigms establishing exact shortest path between a source-terminal node pair perform poorly under the constraints imposed by dynamic network conditions. In this paper, the authors propose an optimal routing approach inspired by the foraging behavior of ants to maximize the network performance while optimizing the network resource utilization. The proposed AntMeshNet algorithm is based upon Ant Colony Optimization (ACO) algorithm; exploiting the foraging behavior of simple biological ants. The paper proposes an Integrated Link Cost (ILC) measure used as link distance between two adjacent nodes. ILC takes into account throughput, delay, jitter of the link and residual energy of the node. Since the relationship between input and output parameters is highly non-linear, fuzzy logic was used to evaluate ILC based upon four inputs. This fuzzy system consists of 81 rules. Routing tables are continuously updated after a predefined interval or after a change in network architecture is detected. This takes care of dynamic environment of WMNs. A large number of trials were conducted for each model. The results have been compared with Adhoc On-demand Distance Vector (AODV) algorithm. The results are found to be far superior to those obtained by AODV algorithm for the same WMN.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3