Fuzzy Logic-Based Cluster Heads Percentage Calculation for Improving the Performance of the LEACH Protocol

Author:

Banimelhem Omar1,Taqieddin Eyad1,Mowafi Moad Y.2,Awad Fahed1,Al-Ma'aqbeh Feda'2

Affiliation:

1. Department of Network Engineering and Security, Jordan University of Science and Technology, Irbid, Jordan

2. Jordan University of Science and Technology, Irbid, Jordan

Abstract

In wireless sensor networks, cluster-based routing was proven to be the most energy-efficient strategy to deal with the scaling problem. In addition, selecting the proper number of clusters is a critical decision that can impose a significant impact on the energy consumption and the network lifetime. This paper presents FL-LEACH, a variant of the well-known LEACH clustering protocol, which attempts to relax the stringent strategy of determining the number of clusters used by LEACH via fuzzy logic decision-making scheme. This relates the number of clusters to a number of network characteristics such as the number of sensor nodes, the area of the sensing field, and the location of the base station. The performance of FL-LEACH was evaluated via simulation and was compared against LEACH using standard metrics such as network lifetime and remaining network energy. The results depicted that the proposed approach has the potential to substantially conserve the sensor node energy and extend lifetime of the network.

Publisher

IGI Global

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuzzy Logic Based Clustering Algorithm for Wireless Sensor Networks;Sensor Technology;2020

2. Fuzzy Sets Based Cluster Routing Protocol For Internet of Things;International Journal of Fuzzy System Applications;2019-07

3. Fuzzy Logic Based Clustering Algorithm for Wireless Sensor Networks;International Journal of Fuzzy System Applications;2017-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3