Affiliation:
1. Electrical and Computer Engineering Department, North South University, Dhaka, Bangladesh
Abstract
One of most prominent features that social networks or e-commerce sites now provide is recommendation of items. However, the recommendation task is challenging as high degree of accuracy is required. This paper analyzes the improvement in recommendation of movies using Fuzzy Inference System (FIS) and Adaptive Neuro Fuzzy Inference System (ANFIS). Two similarity measures have been used: one by taking account similar users' choice and the other by matching genres of similar movies rated by the user. For similarity calculation, four different techniques, namely Euclidean Distance, Manhattan Distance, Pearson Coefficient and Cosine Similarity are used. FIS and ANFIS system are used in decision making. The experiments have been carried out on Movie Lens dataset and a comparative performance analysis has been reported. Experimental results demonstrate that ANFIS outperforms FIS in most of the cases when Pearson Correlation metric is used for similarity calculation.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献