Problems First, Second and Third

Author:

Hill Gary1,Turner Scott1

Affiliation:

1. School of Science and Technology, University of Northampton, Northampton, UK

Abstract

This paper considers the need to focus initial programming education on problem-solving, prior to the teaching of programming syntax and software design methodology. The main vehicle for this approach is simple Lego based robots programmed in Java, followed by the programming of a graphical representation/simulation to develop programming skills. Problem solving is not trivial (Beaumont & Fox, 2003) and is an important skill, central to computing and engineering. The paper extends the authors earlier research on problems first and problem solving (Hill & Turner, 2011) to further emphasise the importance of problem-solving, problem based learning and the benefits of both physical and visual solutions. An approach will be considered, illustrated with a series of problem-solving tasks that increase in complexity at each stage and give the students practice in attempting problem-solving approaches, as well as assisting them to learn from their mistakes. Some of the problems include ambiguities or are purposely ill-defined, to enable the student to resolve these as part of the process. The benefits to students will be discussed including students' statements that this approach, using robots, provides a method to visually and physically see the outcome of a problem. In addition, students report that the method improves their satisfaction with the course. The importance of linking the problem-solving robot activity and the programming assignment, whilst maintaining the visual nature of the problem, will be discussed, together with the comparison of this work with similar work reported by other authors relating to teaching programming using robots (Williams, 2003). In addition, limitations will be discussed relating to the access to the physical robots and the alternative attempts to simulate the robots using three options of, Microsoft Robotics Studio (MSRS), Lego Mindstorms and Greenfoot simulators.

Publisher

IGI Global

Subject

General Medicine

Reference34 articles.

1. Problem Solving and Creativity for Undergraduate Engineers: process or product?;J.Adams;International Conference on Innovation, Good Practice and Research in Engineering Education,2008

2. Adams, J., Turner, S., Kaczmarczyk, S., Picton, P., & Demian, P. (2008). Problem solving and creativity for undergraduate engineers: Findings of an action research project involving robots. Paper presented at the International Conference on Engineering Education (ICEE 2008), Budapest, Hungary.

3. Beaumont, C., & Fox, C. (2003). Learning programming: Enhancing quality through problem-based learning. In Proceeding of 4th Annual Conference of the subject centre for Information and Computer Sciences of the Higher Education Academy (pp. 90-95). Newtownabbey, Northern Ireland: Higher Education Academy.

4. Bell, D., & Parr, M. (2010). Java for students (6th ed.). Upper Saddle River, NJ: Prentice Hall.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3