Prediction of Financial Time Series Data using Hybrid Evolutionary Legendre Neural Network

Author:

Dash Rajashree1,Dash Pradipta Kishore1

Affiliation:

1. Siksha ‘O' Anusandhan University, Bhubaneswar, India

Abstract

In this paper a predictor model using Legendre Neural Network is proposed for one day ahead prediction of financial time series data. The Legendre Neural Network (LENN) is a single layer structure that possess faster convergence rate and reduced computational complexity by increasing the dimensionality of the input pattern with a set of linearly independent nonlinear functions. The parameters of the LENN model are estimated using a Moderate Random Search Particle Swarm Optimization Method (HMRPSO). The HMRPSO is a variant of PSO that uses a moderate random search method to enhance the global search ability of particles and increases their convergence rates by focusing on valuable search space regions. Training LENN using HMRPSO has also been compared with Particle Swarm Optimization (PSO) and Differential Evolution (DE) based learning of LENN for predicting the Bombay Stock Exchange and S&P 500 data sets.

Publisher

IGI Global

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3