Object Segmentation Based on a Nonparametric Snake with Motion Prediction in Video

Author:

Ye Sang-Myoung1,Park Rae-Hong1,Lee Dong-Kyu1

Affiliation:

1. Sogang University, Korea

Abstract

Object segmentation in video sequence is a basic and important task in video applications such as surveillance systems and video coding. Nonparametric snake algorithms for object segmentation have been proposed to overcome the drawback of conventional snake algorithms: the dependency on several parameters. In this chapter, a new object segmentation algorithm for video, based on a nonparametric snake model with motion prediction, is proposed. Object contour is initialized by using the mean absolute difference of intensity between input and previous frames. And in order to convert initial object contours into more exact object contours, the gradient vector flow snake is used. Finally object contour is predicted using a Kalman filter in successive frames. The proposed object segmentation method for video can provide more detailed and improved object segmentation results than the conventional methods. Various experimental results show the effectiveness of the proposed method in terms of the pixel-based quality measure and the computation time.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3