Anomaly Detection in Streaming Sensor Data

Author:

Pawling Alec1,Yan Ping1,Candia Julián2,Schoenharl Tim1,Madey Greg1

Affiliation:

1. University of Notre Dame, USA

2. Northeastern University, USA

Abstract

This chapter considers a cell phone network as a set of automatically deployed sensors that records movement and interaction patterns of the population. The authors discuss methods for detecting anomalies in the streaming data produced by the cell phone network. The authors motivate this discussion by describing the Wireless Phone Based Emergency Response (WIPER) system, a proof-of-concept decision support system for emergency response managers. This chapter also discusses some of the scientific work enabled by this type of sensor data and the related privacy issues. The authors describe scientific studies that use the cell phone data set and steps we have taken to ensure the security of the data. The authors also describe the overall decision support system and discuss three methods of anomaly detection that they have applied to the data.

Publisher

IGI Global

Reference75 articles.

1. Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2003). A framework for clustering evolving data streams. In Proceedings of the 29th Conference on Very Large Data Bases. Berlin, Germany: VLDB Endowment.

2. Agrawal, R., & Srikant, R. (2000). Privacy-preserving data mining. In Proceedings of the 2000 ACM SIGMOD Conference on Management of Data. New York: ACM.

3. Statistical mechanics of complex networks

4. Diameter of the World-Wide Web

5. Error and attack tolerance of complex networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3