Dynamic Ridge Polynomial Higher Order Neural Network

Author:

Ghazali Rozaida1,Hussain Abir2,Nawi Nazri Mohd1

Affiliation:

1. Universiti Tun Hussein Onn, Malaysia

2. Liverpool John Moores University, UK

Abstract

This chapter proposes a novel Dynamic Ridge Polynomial Higher Order Neural Network (DRPHONN). The architecture of the new DRPHONN incorporates recurrent links into the structure of the ordinary Ridge Polynomial Higher Order Neural Network (RPHONN) (Shin & Ghosh, 1995). RPHONN is a type of feedforward Higher Order Neural Network (HONN) (Giles & Maxwell, 1987) which implements a static mapping of the input vectors. In order to model dynamical functions of the brain, it is essential to utilize a system that is capable of storing internal states and can implement complex dynamic system. Neural networks with recurrent connections are dynamical systems with temporal state representations. The dynamic structure approach has been successfully used for solving varieties of problems, such as time series forecasting (Zhang & Chan, 2000; Steil, 2006), approximating a dynamical system (Kimura & Nakano, 2000), forecasting a stream flow (Chang et al, 2004), and system control (Reyes et al, 2000). Motivated by the ability of recurrent dynamic systems in real world applications, the proposed DRPHONN architecture is presented in this chapter.

Publisher

IGI Global

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Simulations Using Cosine and Sigmoid Higher Order Neural Networks;Emerging Capabilities and Applications of Artificial Higher Order Neural Networks;2021

2. Group Models of Artificial Polynomial and Trigonometric Higher Order Neural Networks;Emerging Capabilities and Applications of Artificial Higher Order Neural Networks;2021

3. Higher Order Neural Network and Its Applications: A Comprehensive Survey;Advances in Intelligent Systems and Computing;2018

4. Cosine and Sigmoid Higher Order Neural Networks for Data Simulations;Advances in Computational Intelligence and Robotics;2016

5. Artificial Polynomial and Trigonometric Higher Order Neural Network Group Models;Artificial Higher Order Neural Networks for Modeling and Simulation;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3