Model-Driven Automated Error Recovery in Cloud Computing

Author:

Sun Yu1,White Jules2,Gray Jeff3,Gokhale Aniruddha4

Affiliation:

1. University of Alabama at Birmingham, USA

2. Virginia Tech, USA

3. University of Alabama, USA

4. Vanderbilt University, USA

Abstract

Cloud computing provides a platform that enables users to utilize computation, storage, and other computing resources on-demand. As the number of running nodes in the cloud increases, the potential points of failure and the complexity of recovering from error states grows correspondingly. Using the traditional cloud administrative interface to manually detect and recover from errors is tedious, time-consuming, and error prone. This chapter presents an innovative approach to automate cloud error detection and recovery based on a run-time model that monitors and manages the running nodes in a cloud. When administrators identify and correct errors in the model, an inference engine is used to identify the specific state pattern in the model to which they were reacting, and to record their recovery actions. An error detection and recovery pattern can be generated from the inference and applied automatically whenever the same error occurs again.

Publisher

IGI Global

Reference39 articles.

1. Amazon Elastic Compute Cloud (Amazon EC2). (n.d.) Retrieved March 2010 from http://aws.amazon.com/ec2/

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., et al. (2009). Above the Clouds: A Berkeley View of Cloud Computing. Technical Report 2009-28, UC Berkeley.

3. Developing Applications Using Model-Driven Design Environments.;K.Balasubramanian;IEEE Computer,2006

4. Models@run.time.;G.Blair;IEEE Computer,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cloud Computing: Paradigms and Technologies;Inter-cooperative Collective Intelligence: Techniques and Applications;2013-08-14

2. End-User Support for Debugging Demonstration-Based Model Transformation Execution;Modelling Foundations and Applications;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3