2-D Scalable Multiple Description Coding for Robust H.264/SVC Video Communications

Author:

Xiang Wei1,Zhu Ce2,Siew Chee Kheong2,Xu Yuanyuan2,Liu Minglei2

Affiliation:

1. University of Southern Queensland, Australia

2. Nanyang Technological University, Singapore

Abstract

In this chapter, we investigate two popular techniques for error-resilient H.264/SVC video transmission over packet erasure networks, i.e., layered video coding (LVC) and scalable multiple description coding (SMDC). We compare the respective advantages and disadvantages of these two coding techniques. A comprehensive literature review on latest advancement on SMDC is provided. Furthermore, we report new simulation results for the novel two-dimensional scalable multiple description coding (2-D SMDC) scheme proposed in our previous work (Xiang et al., 2009). The 2-D SMDC scheme allocates multiple description sub-bitstreams of a two-dimensionally scalable bitstream to two network paths with unequal loss rates. We formulate the two-dimensional scalable rate-distortion problem and derive the expected distortion for the proposed scheme. To minimize the end-to-end distortion given the total rate budget and packet loss probabilities, we need to optimally allocate source and channel rates for each hierarchical sub-layer of the scalable bitstream. We consider the use of the Genetic Algorithm to solve the rate-distortion optimization problem. The simulation results verify that the proposed method is able to achieve significant performance gain as opposed to the conventional equal rate allocation method.

Publisher

IGI Global

Reference40 articles.

1. SVC-based scalable multiple description video coding and optimization of encoding configuration

2. Priority encoding transmission

3. Apostolopoulos, A. G. (1999). Error-resilient video compression via multiple state streams, Proc. International Workshop on Very Low Bit rate Video Coding (VLBV’99), Kyoto, Japan.

4. Layered coding vs. multiple descriptions for video streaming over multiple paths

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3