Identification and State Observation of Uncertain Chaotic Systems Using Projectional Differential Neural Networks

Author:

García Alejandro1,Chairez Isaac2,Poznyak Alexander1

Affiliation:

1. CINVESTAV-IPN, Mexico

2. UPIBI-IPN, Mexico

Abstract

The following chapter tackles the nonparametric identification and the state estimation for uncertain chaotic systems by the dynamic neural network approach. The developed algorithms consider the presence of additive noise in the state, for the case of identification, and in the measurable output, for the state estimation case. Mathematical model of the chaotic system is considered unknown, only the chaotic behavior as well as the maximal and minimal bound for each one of state variables are taking into account in the algorithm. Mathematical analysis and simulation results are presented. Application considering the so-called electronic Chua’s circuit is carried out; particularly a scheme of information encryption by the neural network observer with a noisy transmission is showed. Formal mathematical proofs and figures, illustrate the robustness of proposed algorithms mainly in the presence of noises with high magnitude.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3