Discovering Higher Level Correlations from XML Data

Author:

Cagliero Luca1,Cerquitelli Tania1,Garza Paolo2

Affiliation:

1. Politecnico di Torino, Italy

2. Politecnico di Milano, Italy

Abstract

This chapter proposes the XML-GERMI framework to support XML data analysis by automatically extracting generalized association rules (i.e., higher level correlations) from XML data. The proposed approach, which extends the concept of multiple-level association rules, is focused on extracting generalized rules from XML data. To drive the generalization phase of the extraction process, a taxonomy is exploited to aggregate features at different granularity levels. Experiments performed on both real and synthetic datasets show the adaptability and the effectiveness of the proposed framework in discovering higher level correlations from XML data.

Publisher

IGI Global

Reference51 articles.

1. Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In J. B. Bocca, M. Jarke, & C. Zaniolo (Eds.), Proceedings of the 20th International Conference on Very Large Data Bases (VLDB), (pp. 487-499). Morgan Kaufmann.

2. Agrawal, R., & Srikant, R. (1995). Mining generalized association rules. In U. Dayal, P. M. D. Gray, & S. Nishio (Eds.), Proceedings of the 21th International Conference on Very Large Data Bases (VLDB), (pp. 407-419). Morgan Kaufmann.

3. Baldi, M., Baralis, E., & Risso, F. (2005). Data mining techniques for effective and scalable traffic analysis. In A. Clemm, O. Festor, & A. Pras (Eds.), Proceedings of the International Symposium on Integrated Network Management (pp. 105-118). IEEE Computer Society.

4. Baralis, E., Cagliero, L., Cerquitelli, T., D’Elia, V., & Garza, P. (2010). Support driven opportunistic aggregation for generalized itemset extraction. In Proceedings of the 5th IEEE International Conference on Intelligent Systems (pp. 102-107). IEEE Computer Society.

5. Baralis, E., Cagliero, L., Cerquitelli, T., Garza, P., & Marchetti, M. (2009). Context-aware user and service profiling by means of generalized association rules. In J. D. Velasquez, S. A. Rios, R. J. Howlett, & L. C. Jain (Eds.), Proceedings of the 13th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES) Lecture Notes in Computer Science: Vol. 5712 (pp. 50-57). Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3