1. Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In J. B. Bocca, M. Jarke, & C. Zaniolo (Eds.), Proceedings of the 20th International Conference on Very Large Data Bases (VLDB), (pp. 487-499). Morgan Kaufmann.
2. Agrawal, R., & Srikant, R. (1995). Mining generalized association rules. In U. Dayal, P. M. D. Gray, & S. Nishio (Eds.), Proceedings of the 21th International Conference on Very Large Data Bases (VLDB), (pp. 407-419). Morgan Kaufmann.
3. Baldi, M., Baralis, E., & Risso, F. (2005). Data mining techniques for effective and scalable traffic analysis. In A. Clemm, O. Festor, & A. Pras (Eds.), Proceedings of the International Symposium on Integrated Network Management (pp. 105-118). IEEE Computer Society.
4. Baralis, E., Cagliero, L., Cerquitelli, T., D’Elia, V., & Garza, P. (2010). Support driven opportunistic aggregation for generalized itemset extraction. In Proceedings of the 5th IEEE International Conference on Intelligent Systems (pp. 102-107). IEEE Computer Society.
5. Baralis, E., Cagliero, L., Cerquitelli, T., Garza, P., & Marchetti, M. (2009). Context-aware user and service profiling by means of generalized association rules. In J. D. Velasquez, S. A. Rios, R. J. Howlett, & L. C. Jain (Eds.), Proceedings of the 13th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES) Lecture Notes in Computer Science: Vol. 5712 (pp. 50-57). Springer.