Geographical Map Annotation with Significant Tags available from Social Networks

Author:

Roglia Elena1,Meo Rosa1,Ponassi Enrico1

Affiliation:

1. University of Turin, Italy

Abstract

In this chapter we describe how to extract relevant information on a geographical area from information that users share and provide by means of their mobiles or personal digital assistants, thanks to Web 2.0 applications such as OpenStreetMap, Geonames, Flickr, and GoogleMaps. These Web 2.0 applications represent, store, and process information in an XML format. We analyze and use this information to enrich the content of the cartographic map of a given geographical area with up-to-date information. In addition we provide a characterization of the map by selection of the annotations that differentiate the given map from the surrounding areas. This occurs by means of statistical tests on the annotations frequency in the different geographical areas. We present the results of an experimental section in which we show that the content characterization is meaningful, statistically significant, and usefully concise.

Publisher

IGI Global

Reference49 articles.

1. W3C. (1995). Overviwe of SGML resources. Retrieved October 5, 2010, from http://www.w3.org/MarkUp/SGML/

2. W3C. (n.d.). Website of the World Wide Web Consortium. Retrieved October 5, 2010, from www.w3c.org

3. W3C Recommendation. (1998). XML 1.0. Retrieved October 5, 2010, from http://www.w3.org/TR/1998/REC-xml-19980210

4. W3C XML. (n.d.). XML standards. Retrieved 10 05, 2010, from W3C: http://www.w3.org/standards/xml/

5. Adam, N. R., Janeja, V. P., & Atluri, V. (2004). Neighborhood based detection of anomalies in high dimensional spatio-temporal sensor datasets. In H. Haddad, A. Omicini, R. L. Wainwright, & L. M. Liebrock (Eds.), Proceedings of the 2004 ACM Symposium on Applied Computing (SAC), (pp. 576–583). ACM.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A SOA-Based Module for the Production of Geo-Summaries;International Journal of Organizational and Collective Intelligence;2014-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3