Seasonal Precipitation Forecast Based on Artificial Neural Networks

Author:

Rolim da Paz Adriano1,Uvo Cíntia2,Bravo Juan3,Collischonn Walter3,Ribeiro da Rocha Humberto4

Affiliation:

1. Federal University of Paraíba, Brazil

2. Lund University, Sweden

3. Federal University of Rio Grande do Sul, Brazil

4. University of São Paulo, Brazil

Abstract

Agriculture is vulnerable to the interannual climate variability and to its unpredictability, in such a way that most agricultural decisions taken within the time horizon of several months are made in a conservative manner, supposing a near-pessimist scenario. The improvement of climate prediction may help the strategic view, mitigating unwanted impacts and taking advantage of favorable conditions. This chapter presents the development of an Artificial Neural Network (ANN) model for seasonal precipitation forecast based on climate indices, focusing on the practical aspects of selecting the best predictors, defining ANN architecture, data handling and ANN training and validation. The study case is the Pardo/Mogi-Guaçu rivers watershed in Brazil, which is characterized by intense sugarcane plantation for both ethanol and sugar industries. The results demonstrate how the methodology for seasonal precipitation forecast based on ANN can be particularly helpful, with the use of available time series of climate indices.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3