Using Self-Organizing Maps for Rural Territorial Typology

Author:

Santos da Silva Marcos1,Ramos de Siqueira Edmar1,Teixeira Olívio2,Manos Maria1,Monteiro Antônio3

Affiliation:

1. Brazilian Agricultural Research Corporation, Embrapa Coastal Tablelands, Brazil

2. Federal University of Sergipe, Department of Economy, Cidade Universitária, Brazil

3. National Institute for Space Research, Image Processing Division, Brazil

Abstract

This work assessed the capacity of the self-organizing map, an unsupervised artificial neural network, to aid the process of territorial design through visualization and clustering methods applied to a multivariate geospatial temporal dataset. The method was applied in the case study of Sergipe‘s institutional regional partition (Territories of Identity). Results have shown that the proposed method can improve the exploratory spatial-temporal analysis capacity of policy makers that are interested in territorial typology. A new partition for rural planning was elaborated and confirmed the coherence of the Territories of Identity.

Publisher

IGI Global

Reference30 articles.

1. Para una teoría de los estudios territoriales;R.Abramovay;Desarrollo rural – Organizaciones, instituciones y territorios,2006

2. Aksoy, E. (2006, October) Clustering with GIS: an attempt to classify turkish district data. Paper presented at the XXIII FIG Congress. Munich, Germany.

3. The self-organizing map, the Geo-SOM, and relevant variants for geosciences

4. Bandeira, P. S. (2006). Institucionalização de regiões no Brasil. Revista da Sociedade Brasileira para o Progresso da Ciência, 58(1), 34-37.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-Organizing Map Convergence;International Journal of Service Science, Management, Engineering, and Technology;2018-04

2. Related References;Technologies for Urban and Spatial Planning: Virtual Cities and Territories

3. Compilation of References;Technologies for Urban and Spatial Planning: Virtual Cities and Territories

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3