Affiliation:
1. Ionian University, Department of Informatics, Corfu, Greece
Abstract
Machine learning approaches to player modeling traditionally employ a high-level game-knowledge-based feature for representing game sessions, and often player behavioral features as well. The present work makes use of generic low-level features and latent semantic analysis for unsupervised player modeling, but mostly for revealing underlying hidden information regarding game semantics that is not easily detectable beforehand.
Subject
Computer Science Applications