Optimization of Hopfield Neural Network for Improved Pattern Recall and Storage Using Lyapunov Energy Function and Hamming Distance
Author:
Affiliation:
1. Jamia Millia Islamia, New Delhi, India
2. Noida Institute of Engineering and Technology, Greater Noida, India
Abstract
In this paper, we propose a multiconnection-based Hopfield neural network (MC-HNN) based on the hamming distance and Lyapunov energy function to address the limited storage and inadequate recalling capability problems of Hopfield Neural Network (HNN). This study uses the Lyapunov energy function and Hamming Distance to recall correct stored patterns corresponding to noisy test patterns during the convergence phase. The proposed method also extends the traditional HNN storage capacity by storing the individual patterns in the form of etalon arrays through the unique connections among neurons. Hence, the storage capacity now depends on the number of connections and is independent of the total number of neurons in the network. The proposed method achieved the average recall success rate of 100% for bit map images with a noise level of 0, 2, 4, 6 bits, which is a better recall success rate than traditional and genetic algorithm-based HNN methods, respectively. The proposed method also shows quite encouraging results on hand-written images compared with some latest state of art methods.
Publisher
IGI Global
Subject
General Computer Science
Reference33 articles.
1. Information capacity of the Hopfield model
2. Abu-Mostafa, Y. S., Magdon-Ismail, M., & Lin, H. T. (2012). Learning From Data. AMLBook.
3. Storing Infinite Numbers of Patterns in a Spin-Glass Model of Neural Networks
4. High capacity recurrent associative memories
5. Numerical solution of Helmholtz equation by the modified Hopfield finite difference techniques
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimization of Hopfield Neural Network (HNN) using multiconnection and Lyapunov Energy Function (LEF) for storage and recall of handwritten images;Sādhanā;2023-02-15
2. A Robust Automatic Fingerprint Recognition System Using Multi-Connection Hopfield Neural Network;Traitement du Signal;2022-04-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3