Evaluating an Elevated Signal-to-Noise Ratio in EEG Emotion Recognition

Author:

Estreito Zachary1,Le Vinh1,Harris Jr. Frederick C.1ORCID,Dascalu Sergiu M.1

Affiliation:

1. University of Nevada, Reno, USA

Abstract

Predicting valence and arousal values from EEG signals has been a steadfast research topic within the field of affective computing or emotional AI. Although numerous valid techniques to predict valence and arousal values from EEG signals have been established and verified, the EEG data collection process itself is relatively undocumented. This creates an artificial learning curve for new researchers seeking to incorporate EEGs within their research workflow. In this article, a study is presented that illustrates the importance of a strict EEG data collection process for EEG affective computing studies. The work was evaluated by first validating the effectiveness of a machine learning prediction model on the DREAMER dataset, then showcasing the lack of effectiveness of the same machine learning prediction model on cursorily obtained EEG data.

Publisher

IGI Global

Subject

Artificial Intelligence,Computer Graphics and Computer-Aided Design,Computer Networks and Communications,Computer Science Applications,Software

Reference18 articles.

1. Automated EEG analysis of epilepsy: A review

2. Emotions Recognition Using EEG Signals: A Survey

3. EEG-based emotion recognition: Review of commercial EEG devices and machine learning techniques

4. Emotiv. (n.d.-a). Emotiv EPOC X: 14 channel mobile EEG headset. Emotiv. https://www.emotiv.com/epoc-x/

5. Emotiv. (n.d.-b). EmotivPRO. Emotiv. https://www.emotiv.com/emotivpro/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3