Sentiment Analysis in the Light of LSTM Recurrent Neural Networks

Author:

Pal Subarno1,Ghosh Soumadip1,Nag Amitava1

Affiliation:

1. Academy of Technology, Hooghly, India

Abstract

Long short-term memory (LSTM) is a special type of recurrent neural network (RNN) architecture that was designed over simple RNNs for modeling temporal sequences and their long-range dependencies more accurately. In this article, the authors work with different types of LSTM architectures for sentiment analysis of movie reviews. It has been showed that LSTM RNNs are more effective than deep neural networks and conventional RNNs for sentiment analysis. Here, the authors explore different architectures associated with LSTM models to study their relative performance on sentiment analysis. A simple LSTM is first constructed and its performance is studied. On subsequent stages, the LSTM layer is stacked one upon another which shows an increase in accuracy. Later the LSTM layers were made bidirectional to convey data both forward and backward in the network. The authors hereby show that a layered deep LSTM with bidirectional connections has better performance in terms of accuracy compared to the simpler versions of LSTM used here.

Publisher

IGI Global

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference19 articles.

1. A neural probabilistic language model.;Y.Bengio;JMLR,2003

2. Chollet, F. (2015). Keras. Gitub. Retrieved from https://github.com/fchollet/keras

3. Collobert, R., & Weston, J. (2008, July). A unified architecture for natural language processing: Deep neural networks with multitask learning. In Proceedings of the 25th international conference on Machine learning (pp. 160-167). ACM.

4. Learning to Forget: Continual Prediction with LSTM

5. Learning precise timing with LSTM recurrent networks.;F. A.Gers;Journal of Machine Learning Research,2003

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3