Summarizing Opinions with Sentiment Analysis from Multiple Reviews on Travel Destinations

Author:

Roy Argha1,Guria Shyamali1,Halder Suman1,Banerjee Sayani1,Mandal Sourav1

Affiliation:

1. Haldia Institute of Technology, Haldia, India

Abstract

Recently, the web has been crowded with growing volumes of various texts on every aspect of human life. It is difficult to rapidly access, analyze, and compose important decisions using efficient methods for raw textual data in the form of social media, blogs, feedback, reviews, etc., which receive textual inputs directly. It proposes an efficient method for summarization of various reviews of tourists on a specific tourist spot towards analyzing their sentiments towards the place. A classification technique automatically arranges documents into predefined categories and a summarization algorithm produces the exact condensed input such that output is most significant concepts of source documents. Finally, sentiment analysis is done in summarized opinion using NLP and text analysis techniques to show overall sentiment about the spot. Therefore, interested tourists can plan to visit the place do not go through all the reviews, rather they go through summarized documents with the overall sentiment about target place.

Publisher

IGI Global

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference17 articles.

1. Summarization – compressing data into an informative representation

2. Das, D. & Martins, A.F. (2007). A survey on automatic text summarization (Literature Survey for the Language and Statistics II course at CMU).

3. Recent automatic text summarization techniques: a survey

4. The Role of Text Pre-processing in Sentiment Analysis

5. Mining and summarizing customer reviews

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sentiment classification via user and product interactive modeling;Science China Information Sciences;2021-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3