A Scalable Graph-Based Semi-Supervised Ranking System for Content-Based Image Retrieval

Author:

Qi Xiaojun1,Chang Ran1

Affiliation:

1. Department of Computer Science, Utah State University, Logan, UT, USA

Abstract

The authors propose a scalable graph-based semi-supervised ranking system for image retrieval. This system exploits the synergism between relevance feedback based transductive short-term learning and semantic feature-based long-term learning to improve retrieval performance. Active learning is applied to build a dynamic feedback log to extract semantic features of images. Two-layer manifold graphs are then built in both low-level visual and high-level semantic spaces. One graph is constructed at the first layer using anchor images obtained from the feedback log. Several graphs are constructed at the second layer using images in their respective cluster formed around each anchor image. An asymmetric relevance vector is created for each second layer graph by propagating initial scores from the first layer. These vectors are fused to propagate relevance scores of labeled images to unlabeled images. The authors’ extensive experiments demonstrate the proposed system outperforms four manifold-based and five state-of-the-art long-term-based image retrieval systems.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3