Music Control in an Interactive Conducting System Using Kinect

Author:

Chen Yi-Shin1,Toh Leng-Wee2,Liu Yi-Lan1

Affiliation:

1. Institute of Information Systems and Applications, National Tsing Hua University, Hsinchu, Taiwan

2. Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

Abstract

Music conducting is the art of directing musical ensembles with hand gestures to personalize and diversify a piece of music. Although the ability to successfully perform a musical piece demands intense training and coordination for the conductor and the orchestra, preparing a practice session is expensive and time-consuming. Hence, there is a genuine need for alternatives capable of providing adequate training for conductors at all skill levels. The potential use of virtual and augmented reality technology holds particular promise. The goal of this research is to examine the mechanics of music conducting and to develop a system capable of closely simulating the experience of conducting a piece of music. After extensive discussions with professional and nonprofessional conductors, in addition to wide-ranging research regarding music conducting materials, several key features of conducting were identified. A set of lightweight algorithms exploring these features was developed to enable tempo control, volume adjustment, and instrument emphasis, which are core components of conducting. Such a system would be a helpful training tool for students, an experiential tool allowing professional conductors and composers to shape music at a low cost, or an entertainment tool for nonprofessional music lovers. In this paper, we propose a real-time interactive conducting system using Microsoft Kinect. The proposed system overcomes the limitation of Kinect's design, which is generally designed for large body movements. In this system, delicate conducting signals can be correctly recognized without referencing any prior knowledge. Evaluation of the algorithms in real-world scenarios reveals promising results. The system was evaluated by conductors of all skill levels and provided a high level of accuracy and a low latency. Users of the final system expressed satisfaction with the virtual experience.

Publisher

IGI Global

Reference21 articles.

1. Argueta, C., Ko, C., & Chen, Y. (2009). Interacting with a music conducting system. In J. A. Jacko (Ed.), Proceedings of the 13th International Conference on Human-Computer Interaction. Part II: Novel Interaction Methods and Techniques (pp. 654-663). Berlin, Heidelberg, Germany: Springer-Verlag.

2. Personal orchestra: a real-time audio/video system for interactive conducting

3. Chafe, C., Wilson, S., Leistikow, R., Chisholm, D., & Scavone, G. (2000). A simplified approach to high quality music and sound over IP. In D. Rocchesso (Ed.), Proceedings of the COST-G6 Conference on Digital Audio Effects (pp. 159-164). Verona, Italy: Dipartmento Scientifico e Tecnologico, Università di Verona.

4. A Customizable Recognizer for Orchestral Conducting Gestures Based on Neural Networks

5. Protocol Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3