Affiliation:
1. Bowie State University, USA
2. Coastal Carolina University, USA
3. University of the District of Columbia, USA
Abstract
Human emotion recognition is critical to people managing their stress and emotions. Although many innovative techniques have been proposed to recognize human emotions, it is still challenging to understand the emotions due to individual differences in the diversity of emotions. This article focuses on analyzing the emotions computationally. In detail, a wavelet transform technique is utilized to extract significant features and find patterns in an emotion dataset. With the extracted features, both classification and visual analysis are performed. For the classification, Logistic Regression, C4.5, and Support Vector Machine are used. Visualization approaches are also utilized to represent similarities and differences among the emotion patterns. From the analysis, the authors found that the proposed method shows an improvement in identifying the differences among the emotions.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献