Spatio-Temporal Denoising for Depth Map Sequences

Author:

Hach Thomas1,Seybold Tamara1

Affiliation:

1. Arnold & Richter Cinetechnik (ARRI), Munich, Germany

Abstract

This paper proposes a novel strategy for depth video denoising in RGBD camera systems. Depth map sequences obtained by state-of-the-art Time-of-Flight sensors suffer from high temporal noise. Hence, all high-level RGB video renderings based on the accompanied depth maps' 3D geometry like augmented reality applications will have severe temporal flickering artifacts. The authors approached this limitation by decoupling depth map upscaling from the temporal denoising step. Thereby, denoising is processed on raw pixels including uncorrelated pixel-wise noise distributions. The authors' denoising methodology utilizes joint sparse 3D transform-domain collaborative filtering. Therein, they extract RGB texture information to yield a more stable and accurate highly sparse 3D depth block representation for the consecutive shrinkage operation. They show the effectiveness of our method on real RGBD camera data and on a publicly available synthetic data set. The evaluation reveals that the authors' method is superior to state-of-the-art methods. Their method delivers flicker-free depth video streams for future applications.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Depth map artefacts reduction: a review;IET Image Processing;2020-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3