Affiliation:
1. 3Tier R&D India Pvt Ltd, India
2. Bharat Electronics Limited, India
3. Manakula Vinayagar Institute of Technology, India
Abstract
Machine learning (without human interference) can collect, analyze, and process data. In the case of cyber security, this technology helps to better analyze previous cyber-attacks and develop respective defense responses. This approach enables an automated cyber defense system with a minimum-skilled cyber security force. There are high expectations for machine learning (ML) in cyber security, and for good reasons. With the help of ML algorithms, we can sift through massive amounts of security events looking for anomalies, deviations from normal behavior that are often indicative of malicious activity. These findings are then presented to the analyst for review and vetting, and the results of his determination fed back into the system for training. As we process more and more data through the system, it evolves: it learns to recognize similar events and, eventually, the underlying traits of malicious behavior that we're trying to detect. This chapter explores machine learning forensics.
Reference11 articles.
1. Development and validation of a Database Forensic Metamodel (DBFM)
2. Data mining based intelligent analysis of threatening e-mail
3. González-López, J., Ventura, S., & Cano, A. (n.d.). Distributed selection of continuous features in ultilabelclassi_cation using mutual information. IEEE Trans. Neural Netw. Learn. Syst. Available: https://ieeexplore.ieee.org/document/8877992
4. The state of database forensic research
5. Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. Int. J. Forecasting, 32(3), 669-679. Available: https://linkinghub.elsevier. com/retrieve/pii/S0169207016000121
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献