Optimizing Learning Weights of Back Propagation Using Flower Pollination Algorithm for Diabetes and Thyroid Data Classification

Author:

Roman Muhammad1,Khan Siyab1ORCID,Khan Abdullah1ORCID,Ali Maria1

Affiliation:

1. The University of Agriculture, Peshawar, Pakistan

Abstract

A number of ANN methods are used, but BP is the most commonly used algorithms to train ANNs by using the gradient descent method. Two main problems which exist in BP are slow convergence and local minima. To overcome these existing problems, global search techniques are used. This research work proposed new hybrid flower pollination based back propagation HFPBP with a modified activation function and FPBP algorithm with log-sigmoid activation function. The proposed HFPBP and FPBP algorithm search within the search space first and finds the best sub-search space. The exploration method followed in the proposed HFPBP and FPBP allows it to converge to a global optimum solution with more efficiency than the standard BPNN. The results obtained from proposed algorithms are evaluated and compared on three benchmark classification datasets, Thyroid, diabetes, and glass with standard BPNN, ABCNN, and ABC-BP algorithms. The simulation results obtained from the algorithms show that the proposed algorithm performance is better in terms of lowest MSE (0.0005) and high accuracy (99.97%).

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3