Assessment of Electric Consumption Forecast Using Machine Learning and Deep Learning Models for the Industrial Sector

Author:

Dhupia Bhawna1,Rani M. Usha1

Affiliation:

1. Sri Padmavathi Viswa Vidyalayam, India

Abstract

Power demand forecasting is one of the fields which is gaining popularity for researchers. Although machine learning models are being used for prediction in various fields, they need to upgrade to increase accuracy and stability. With the rapid development of AI technology, deep learning (DL) is being recommended by many authors in their studies. The core objective of the chapter is to employ the smart meter's data for energy forecasting in the industrial sector. In this chapter, the author will be implementing popular power demand forecasting models from machine learning and compare the results of the best-fitted machine learning (ML) model with a deep learning model, long short-term memory based on RNN (LSTM-RNN). RNN model has vanishing gradient issue, which slows down the training in the early layers of the network. LSTM-RNN is the advanced model which take care of vanishing gradient problem. The performance evaluation metric to compare the superiority of the model will be R2, mean square error (MSE), root means square error (RMSE), and mean absolute error (MAE).

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3