Affiliation:
1. Sri Padmavathi Viswa Vidyalayam, India
Abstract
Power demand forecasting is one of the fields which is gaining popularity for researchers. Although machine learning models are being used for prediction in various fields, they need to upgrade to increase accuracy and stability. With the rapid development of AI technology, deep learning (DL) is being recommended by many authors in their studies. The core objective of the chapter is to employ the smart meter's data for energy forecasting in the industrial sector. In this chapter, the author will be implementing popular power demand forecasting models from machine learning and compare the results of the best-fitted machine learning (ML) model with a deep learning model, long short-term memory based on RNN (LSTM-RNN). RNN model has vanishing gradient issue, which slows down the training in the early layers of the network. LSTM-RNN is the advanced model which take care of vanishing gradient problem. The performance evaluation metric to compare the superiority of the model will be R2, mean square error (MSE), root means square error (RMSE), and mean absolute error (MAE).