Application of LiMn2O4 Nanostructures as Efficient Cathodes for Energy Storage Devices

Author:

Akhoon Shabir Ahmad1,Sofi Ashaq Hussain2ORCID,Khan Rayees Ahmad3,Tantray Ab. Mateen2,Rubab Seemin2ORCID

Affiliation:

1. Department of Applied Sciences, Institute of Technology, University of Kashmir, India

2. Department of Physics, National Institute of Technology, Srinagar, India

3. Department of Physics, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India

Abstract

Renewable energy resources have been investigated as alternatives to fossil fuels. Though the energy density of these renewable sources is not comparable to the fossil fuels, their abundance make them highly interesting. There are three main steps in the renewable energy utilization: harvesting, conversion, and storage. Thus, after harvesting renewable energy, storing this energy is an important aspect for its large-scale end use. Considering the fact that the energy is a basic need for life on earth, there has been a strong scientific temperament towards the renewable energy utilization. The electrical energy storage maintains the key to promote the use of renewable energy. Among the storage devices, the rechargeable lithium ion batteries (LIBs) are the most promising energy storage devices. Among various cathodes proposed for LIBs, the most promising one is the spinel lithium manganese oxide (LiMn2O4). Its non-toxicity, low cost, abundance, and ease of synthesis, besides being environmentally friendly, make it suitable for next generation green LIBs.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3