Affiliation:
1. Süleyman Demirel University, Turkey
2. Mehmet Akif Ersoy University, Turkey
Abstract
This work studies the singular Hahn-Dirac system given by Here 𝜇 is a complex spectral parameter, p(.) and r(.) are real-valued continuous functions at 𝜔0, defined on [𝜔0,∞) and q∈(0,1), , 𝜔>0, x∈[𝜔0,∞). The existence of a spectral function for this system is proved. Further, a Parseval equality and an expansion formula in eigenfunctions are proved in terms of the spectral function.
Reference50 articles.
1. Aldwoah, K. A. (2009). Generalized time scales and associated difference equations (Ph.D. Thesis). Cairo University.
2. Dissipative Sturm-Liouville operators with a spectral parameter in the boundary condition on bounded time scales;B. P.Allahverdiev;Electronic Journal of Differential Equations,2017
3. An expansion theorem for q-Sturm-Liouville operators on the whole line.;B. P.Allahverdiev;Turkish Journal of Mathematics,2018
4. Allahverdiev B. P. & Tuna H. (2018b). Spectral expansion for the singular Dirac system with impulsive conditions. Turk J Math. 42.2527 – 2545.
5. Allahverdiev B. P. & Tuna H. (2019a). Eigenfunction expansion for singular Sturm-Liouville problems with transmission conditions, Electron. J. Differential Equations, Vol. 2019. No. 03. pp. 1-10.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Eigenfunction expansion for impulsive singular Hahn–Dirac system;Rendiconti del Circolo Matematico di Palermo Series 2;2024-04-16
2. Hahn-Hamiltonian systems;Turkish Journal of Mathematics;2023-01-01
3. SPECTRAL EXPANSION FOR DISCONTINUOUS SINGULAR DIRAC SYSTEMS;HONAM MATH J;2022
4. Singular Hahn - Hamiltonian systems;Ufa Mathematical Journal;2022
5. On square integrable solutions of a Hahn–Dirac system;Rendiconti del Circolo Matematico di Palermo Series 2;2021-08-28