Affiliation:
1. Süleyman Demirel University, Turkey
Abstract
The authors consider a nonlinear epidemic equation by modeling it with generalized piecewise constant argument (GPCA). The authors investigate invariance region for the considered model. Sufficient conditions guaranteeing the existence and uniqueness of the solutions of the model are given by creating integral equations. An important auxiliary result giving a relation between the values of the unknown function solutions at the deviation argument and at any time t is indicated. By using Lyapunov-Razumikhin method developed by Akhmet and Aruğaslan for the differential equations with generalized piecewise constant argument (EPCAG), the stability of the trivial equilibrium is investigated in addition to the stability examination of the positive equilibrium transformed into the trivial equilibrium. Then sufficient conditions for the uniform stability and the uniform asymptotic stability of trivial equilibrium and the positive equilibrium are given.