Principles, Experiments, and Numerical Studies of Supercritical Fluid Natural Circulation System

Author:

Chen Lin1ORCID

Affiliation:

1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, China & University of Chinese Academy of Sciences, China

Abstract

Due to the unique thermal and transport properties, supercritical natural circulation loop (NCL, or thermosyphon) has been proposed in many energy systems, such as solar heater, nuclear cooling, waste heat recovery, geothermal, etc. This chapter presents the principals of supercritical natural circulation loop and its application challenges. A specially designed experimental prototype system is introduced and compared with numerical findings. The system is operated in wide range of pressures from around 6.0 MPa to 15.0 MPa in the near-critical region. It is found that in a supercritical natural circulation system, very high Reynolds number natural convection flow can be achieved only by simple heating and cooling. Thermal performance analysis and parameter effects are carried out along with the experimental development. The heat transfer dependency on operation and its mechanisms are also explained and summarized in this chapter. The comparison of experimental and numerical results contributes to better understanding of NCL stability phenomena and applications in energy systems.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3