Predicting the Future Research Gaps Using Hybrid Approach

Author:

Premananthan Premisha1,Kuhaneswaran Banujan2ORCID,Kumara Banage T. G. S.1ORCID,Kudavidanage Enoka P.1

Affiliation:

1. Sabaragamuwa Univeristy of Sri Lanka, Sri Lanka

2. Sabaragamuwa University of Sri Lanka, Sri Lanka

Abstract

Sri Lanka is one of the global biodiversity hotspots that contain a large variety of fauna and flora. But nowadays Sri Lankan wildlife has faced many issues because of poor management and policies to protect wildlife. The lack of technical and research support leads many researchers to retreat to select wildlife as their domain of study. This study demonstrates a novel approach to data mining to find hidden keywords and automated labeling for past research work in this area. Then use those results to predict the trending topics of researches in the field of biodiversity. To model topics and extract the main keywords, the authors used the latent dirichlet allocation (LDA) algorithms. Using the topic modeling performance, an ontology model was also developed to describe the relationships between each keyword. They classified the research papers using the artificial neural network (ANN) using ontology instances to predict the future gaps for wildlife research papers. The automatic classification and labeling will lead many researchers to find their desired research papers accurately and quickly.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3