IoT Forensic Science

Author:

Casey Eoghan1,Spichiger Hannes1,Ryser Elénore1,Servida Francesco1,Jaquet-Chiffelle David-Olivier1

Affiliation:

1. Université de Lausanne, Switzerland

Abstract

IoT devices produce information that can be used in criminal investigations and cybersecurity incidents to make inferences about identities, locations, chronologies, and relationships between relevant entities. Before this information is relied upon to make critical decisions, its veracity must be assessed critically, and the link between virtual and physical worlds must be evaluated carefully. This chapter presents the forensic science principles needed to exploit the full potential of IoT traces, including uniqueness, exchange, provenance, integrity, reliability, repeatability, evaluating links between virtual and physical entities, and formally assessing alternative hypotheses. This chapter also discusses core forensic processes and activities, demonstrating their application to forensic analysis of IoT devices using practical examples. A typology of IoT traces is proposed and their usefulness during an investigation is discussed. Finally, an investigative scenario is presented to illustrate the opportunities and challenges of exploiting IoT devices and traces for investigative and forensic purposes.

Publisher

IGI Global

Reference47 articles.

1. Statistics and the Evaluation of Evidence for Forensic Scientists

2. Birrer, S. (2010). Analyse systématique et permanente de la délinquance sérielle: place des statistiques criminelles: apport des approches situationnelles pour un système de classification: perspectives en matière de coopération. Academic Press.

3. Bitzer, S., Albertini, N., Lock, E., Ribaux, O., & Delémont, O. (2015). Utility of the clue — From assessing the investigative contribution of forensic science to supporting the decision to use traces (Vol. 55). Academic Press.

4. Carrier, B. (2003). Defining digital forensic examination and analysis tools using abstraction layers. International Journal of Digital Evidence, 1(4), 1-12.

5. Casey, E. (2002) "Error, Uncertainty, and Loss in Digital Evidence" International Journal of Digital Evidence, Volume 1, Issue 2

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3