Spectral Efficiency Self-Optimization through Dynamic User Clustering and Beam Steering

Author:

Parwez Md Salik1,Farooq Hasan1,Imran Ali1,Refai Hazem1

Affiliation:

1. University of Oklahoma, USA

Abstract

This paper presents a novel scheme for spectral efficiency (SE) optimization through clustering of users. By clustering users with respect to their geographical concentration we propose a solution for dynamic steering of antenna beam, i.e., antenna azimuth and tilt optimization with respect to the most focal point in a cell that would maximize overall SE in the system. The proposed framework thus introduces the notion of elastic cells that can be potential component of 5G networks. The proposed scheme decomposes large-scale system-wide optimization problem into small-scale local sub-problems and thus provides a low complexity solution for dynamic system wide optimization. Every sub-problem involves clustering of users to determine focal point of the cell for given user distribution in time and space, and determining new values of azimuth and tilt that would optimize the overall system SE performance. To this end, we propose three user clustering algorithms to transform a given user distribution into the focal points that can be used in optimization; the first is based on received signal to interference ratio (SIR) at the user; the second is based on received signal level (RSL) at the user; the third and final one is based on relative distances of users from the base stations. We also formulate and solve an optimization problem to determine optimal radii of clusters. The performances of proposed algorithms are evaluated through system level simulations. Performance comparison against benchmark where no elastic cell deployed, shows that a gain in spectral efficiency of up to 25% is possible depending upon user distribution in a cell.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3