Using Functional Link Artificial Neural Network (FLANN) for Bank Credit Risk Assessment

Author:

Jena Saroj Kanta1,Dwivedy Maheshwar1,Kumar Anil1

Affiliation:

1. BML Munjal University, India

Abstract

Credit scoring is the most important and critical component conducted by the credit providers to decide whether to grant a loan to the applicant or not. Therefore credit scoring models are generally used to predict the potentiality of the loan applicant. A proper evaluation of the credit can help the service provider to determine whether to grant or to reject the credit. The objective of the study is to predict banking credit scoring assessment using a data mining technique i.e. Functional Link Artificial Neural Network (FLANN) classifier. Credit approval datasets: Australian credit and German credit have been used to do this analysis. The output of the study shows that the proposed model used for classification works better on credit dataset. Secondly, we have applied our proposed model on the two credit approval dataset to check the performance of the model for the classification accuracy. A proper evaluation of the credit using the proposed FLANN approach can help the service provider to accurately and quickly ascertain whether to grant credit or to reject.

Publisher

IGI Global

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3