Using MLP Neural Networks to Detect Late Blight in Brazilian Tomato Crops

Author:

Cruz Sergio Manuel Serra1,Vianna Gizelle Kupac1

Affiliation:

1. Federal Rural University of Rio de Janeiro, Brazil

Abstract

The food quality is a major issue in agriculture, economics, and public health. The tomato is one the most consumed vegetables in the world, having a significant production chain in Brazil. Its culture permeates many economic and social sectors. This paper presents a technological approach focused on enhancing the quality of tomatoes crops. The authors developed intelligent computational strategies to support early detection of diseases in Brazilian tomato crops. Their approach consorts real field experiments with inexpensive computer-aided experiments based on pattern recognition using neural networks techniques. The recognition tasks aimed at the identification foliage diseases named late blight, which is characterized by the incidence of brown spots on tomato leaves. The identification method achieved a hit rate of 94.12%, by using digital images in the visible spectrum of the leaves.

Publisher

IGI Global

Reference52 articles.

1. Andrade, D. F. A. A. (1997). Previsão e controle químico de pinta-preta (Alternaria solani) sob dois sistemas de condução do tomateiro (Lycopersicon esculentum Mill.) [Master’s Thesis]. Universidade Federal de Viçosa, Viçosa.

2. Delaying spoilage of tomatoes.;J. C.Ayres;Food Technology,1964

3. Digital image processing techniques for detecting, quantifying and classifying plant diseases

4. Validação de dois sistemas de previsão para o controle da requeima do tomateiro na região de Caçador, SC.;W. F.Becker;Agropecuária Catarinense,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3