A Method for Identifying Fatigue State of Driver's Face Based on Improved AAM Algorithm

Author:

Li Zuojin1,Peng Jun1ORCID,Chen Liukui1,Wu Ying1,Shi Jinliang1

Affiliation:

1. Chongqing University of Science and Technology, China

Abstract

The change of lighting conditions and facial pose often affects the driver's face's video registration greatly, which affects the recognition accuracy of the driver's fatigue state. In this paper, the authors first analyze the reasons for the failure of the driver's face registration in the light conditions and the changes of facial gestures, and propose an adaptive AAM (Active Appearance Model) algorithm of adaptive illumination and attitude change. Then, the SURF (speeded up robust feature) feature extraction is performed on the registered driver's face video images, and finally the authors input the extracted SURF feature into the designed artificial neural network to realize the recognition of driver's fatigue state. The experimental results show that the improved AAM method can better adapt to the driver's face under the illumination and attitude changes, and the driver's facial image's SURF feature is more obvious. The average correct recognition rate of the driver's fatigue states is 92.43%.

Publisher

IGI Global

Reference41 articles.

1. Artificial neural networks: fundamentals, computing, design, and application

2. SURF: Speeded Up Robust Features

3. A Review of the Driver Fatigue Detection Technology.;C.Bo;Proceedings of 2007 Automobile Safety Technology Conference of,2007

4. Invariant Features from Interest Point Groups

5. A method for checking interobserver reliability in observational sleep studies.;J. S.Carroll;Sleep,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3