Application of Artificial Neural Networks to Reliable Nuclear Data for Nonproliferation Modeling and Simulation

Author:

Lagari Pola Lydia1,Sobes Vladimir2,Alamaniotis Miltiadis3,Tsoukalas Lefteri H.4

Affiliation:

1. Purdue University, USA

2. Oak Ridge National Laboratory, USA

3. University of Utah, USA & Applied Intelligent Systems Laboratory, School of Nuclear Engineering, Purdue University, USA

4. Applied Intelligent Systems Laboratory, School of Nuclear Engineering, Purdue University, USA

Abstract

Detection and identification of special nuclear materials (SNMs) are an essential part of the US nonproliferation effort. Modern cutting-edge SNM detection methodologies rely more and more on modeling and simulation techniques. Experiments with radiological samples in realistic configurations, is the ultimate tool that establishes the minimum detection limits of SNMs in a host of different geometries. Modern modeling and simulation approaches have the potential to significantly reduce the number of experiments with radioactive sources needed to determine these detection limits and reduce the financial barrier to SNM detection. Unreliable nuclear data is one of the principal causes of uncertainty in modeling and simulating nuclear systems. In particular, nuclear cross sections introduce a significant uncertainty in the nuclear data. The goal of this research is to develop a methodology that will autonomously extract the correct nuclear resonance characteristics of experimental data in a reliable way, a task previously left to expert judgement. Accurate nuclear data will in turn allow contemporary modeling and simulation to become far more reliable, de-escalating the extent of experimental testing. Consequently, modeling and simulation techniques reduce the use and distribution of radiological sources, while at the same time increase the reliability of the currently used methods for the detection and identification of SNMs.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3