Knowledge Acquisition Through Ontologies from Medical Natural Language Texts

Author:

Medina-Moreira José1,Lagos-Ortiz Katty1,Luna-Aveiga Harry1,Apolinario-Arzube Oscar1,Salas-Zárate María del Pilar2,Valencia-García Rafael2

Affiliation:

1. University of Guayaquil, Ecuador

2. University of Murcia, Spain

Abstract

Ontologies are used to represent knowledge and they have become very important in the Semantic Web era. Ontologies evolve continuously during their life cycle to adapt to new requirements and needs, especially in the biomedical field, where the number of ontologies and their complexity have increased during the last years. On the other hand, a vast amount of clinical knowledge resides in natural language texts. For these reasons, building and maintaining biomedical ontologies from natural language texts is a relevant and challenging issue. In order to provide a general solution and to minimize the experts' participation during the ontology enriching process, a methodology for extracting terms and relations from natural language texts is proposed in this work. This framework is based on linguistic and statistical methods and semantic role labeling technologies, having been validated in the domain of diabetes, where they have obtained encouraging results with an F-measure of 82.1% and 79.9% for concepts and relations, respectively.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3