Quadruped Robots With Bio-Inspired Gait Generation Methods Using Sole Pressure Sensory Feedback

Author:

Takei Yuki1,Morishita Katsuyuki1,Saito Ken1

Affiliation:

1. Nihon University, Japan

Abstract

There is still no artificial life with the same adaptability and flexibility as animals. Although artificial life will advance by acquiring nervous systems similar to those of animals, its role and mechanisms remain unknown. The authors have developed a quadruped robot with a bio-inspired gait generation method to realize robots that can behave like animals. The method could generate gaits using pulse-type hardware neuron models (P-HNMs). However, characteristics of the P-HNMs had large scatterings, and the robot could maintain gaits only a few cycles. This chapter explains the method and P-HNM integrated circuits (ICs) developed to improve P-HNMs' characteristics. In addition, dynamic simulations with a simplified method and discussions of the methods and ICs are provided. Although the proposed methods are simple, they could actively generate gaits using interactions between the body and the environment. Therefore, the methods will lead to the realization of a quadruped robot with flexible adaptability.

Publisher

IGI Global

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3